

ms2660

Accurate Online Support Vector Regression

Junshui Ma, James Theiler, and Simon Perkins

NIS-2, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

{junshui, jt, s.perkins}@lanl.gov

Abstract

Batch implementations of Support Vector Regression (SVR) are inefficient when used in

an online setting, because they must be retrained from scratch every time the training set

is modified. Following an incremental support vector classification algorithm introduced

by Cauwenberghs & Poggio (2001), we developed an Accurate Online Support Vector

Regression (AOSVR) which efficiently updates a trained SVR function whenever a

sample is added to or removed from the training set. The updated SVR function is

identical to that produced by a batch algorithm. Applications of AOSVR both in online

and in cross-validation scenarios are presented. In both scenarios, numerical experiments

indicate that AOSVR is faster than batch SVR algorithms with both cold and warm start.

 Keywords: Support Vector Regression; Online Time-series Prediction; Leave-one-out

Cross-validation; Quadratic Programming; Warm Start.

1. Introduction

Support Vector Regression (SVR) fits a continuous-valued function to data in a way

that shares many of the advantages of support vector machine (SVM) classification. Most

algorithms for SVR (Smola & Schölkopf, 1998; Chang & Lin, 2002) require that training

samples be delivered in a single batch. For applications such as online time-series

prediction or leave-one-out cross-validation, a new model is desired each time a new

sample is added to (or removed from) the training set. Retraining from scratch for each

new data point can be very expensive. Approximate online training algorithms have

previously been proposed for SVMs (Syed et al.,1999; Csato & Opper, 2001; Gentile,

2001; Graepel et al., 2001; Herbster, 2001; Li & Long, 1999; Kivinen et al., 2002;

Ralaivola & d’Alche-Buc, 2001). We propose an accurate online support vector

regression (AOSVR) algorithm that follows the approach of Cauwenberghs & Poggio

(2001) for incremental SVM classification.

This paper is organized as follows. The formulation of the SVR problem, and the

development of the Karush-Kuhn-Tucker (KKT) conditions that its solution must satisfy,

are presented in Section 2. The incremental SVR algorithm is derived in Section 3, and a

decremental version is described in Section 4. Two applications of the AOSVR algorithm

are presented in Section 5, along with a comparison to batch algorithms using both cold

start and warm start.

2. Support Vector Regression and the Karush-Kuhn-Tucker conditions

A more detailed version of the following presentation of SVR theory can be found in

Smola & Schölkopf (1998).

Given a training set {(,), 1... }i iT y i l= =x , where N
i ∈x R , and iy ∈R , we construct a

linear regression function

 () ()Tf b= Φ +x W x (1)

on a feature space F. Here, W is a vector in F, and ()Φ x maps the input x to a vector in

F. The W and b in (1) are obtained by solving an optimization problem:

*

,
1

*

*

1
min ()

2

. . (())

(())

, 0, 1

l
T

i i
b

i

T
i i

T
i i

i i

P C

s t y b

b y

i l

ξ ξ

ε ξ
ε ξ

ξ ξ

=

= + +

− Φ + ≤ +

Φ + − ≤ +

≥ =

∑
W

W W

W x

W x

�

 (2)

The optimization criterion penalizes data points whose y-values differ from f (x) by more

than ε. The slack variables, ξ and ξ *, correspond to the size of this excess deviation for

positive and negative deviations, respectively, as shown in Figure 1.

Figure 1. The ε -insensitive loss function and the role of the slack variables ξ and ξ *

Introducing Lagrange multipliers α, α*, η and η*, we can write the corresponding

Lagrangian as:

* * *

1 1

* *

1 1

* *

1
() ()

2

(()) (())

. . , , , 0

l l
T

P i i i i i i
i i

l l
T T

i i i i i i i i
i i

i i i i

L C

y b y b

s t

ξ ξ η ξ η ξ

α ε ξ α ε ξ

α α η η

= =

= =

= + + − + −

+ + − Φ − − + − + Φ +

≥

∑ ∑

∑ ∑

W W

W x W x

This in turn leads to the dual optimization problem:

*

* * * *

, 1 1 1 1

*

*

1

1
min ()() () ()

2

. . 0 , 1 ,

() 0

l l l l

ij i i j j i i i i i
i j i i

i i

l

i i
i

D Q y

s t C i l

α α α α ε α α α α

α α

α α

= = = =

=

= − − + + − −

≤ ≤ =

− =

∑∑ ∑ ∑

∑

α α

� (3)

where () () (,)T

ij i j i jQ K= Φ Φ =x x x x . Here (,)i jK x x is a kernel function (Smola &

Schölkopf 1998). Given the solution of (3), the regression function (1) can be written:

 *

1

() () (,)
l

i i i
i

f K bα α
=

= − +∑x x x (4)

The Lagrange formulation of (3) can be represented as:

[] ∑∑∑

∑∑∑∑

===

=== =

−+−+−++−

−−++−−=

l

i
ii

l

i
iiii

l

i
iiii

l

i
iii

l

i
ii

l

i

l

j
jjiiijD

CuCu

yQL

1

*

1

**

1

**

1

*

1

*

1 1

**

)()()()(

)()())((
2

1

ααζαααδαδ

ααααεαααα
 (5)

where (*)
iδ , (*)

iu , and ζ are the Lagrange multipliers. Optimizing this Lagrangian leads to

the Karush-Kuhn-Tucker (KKT) conditions:

0)(,0

0,0

0)(

0)(

(*)(*)(*)

(*)(*)(*)

**

1

*
*

1

*

=−≥

=≥

=+−−++−−=
∂
∂

=+−+−+−=
∂
∂

∑

∑

=

=

Cuu

uyQ
L

uyQ
L

iii

iii

iii

l

j
jjij

i

D

iii

l

j
jjij

i

D

α
αδδ

δζεαα
α

δζεααα

����

�����

 (6)

Note that ζ in (6) is equal to b in (1) and (4) at optimality (Chang & Lin, 2002).

According to the KKT conditions (6), at most one of iα and *
iα will be nonzero, and

both are nonnegative. Therefore, we can define a coefficient difference iθ as

 *
iii ααθ −= (7)

and note that iθ determines both iα and *
iα .

Define a margin function ()ih x for the ith sample ix as:

1

() ()
l

i i i ij j i
j

h x f x y Q y bθ
=

≡ − = − +∑ . (8)

Combining (6), (7), and (8), we can obtain:

() ,

() , 0

() 0

() , 0

() ,

i i

i i

i i

i i

i i

h C

h C

h

h C

h C

ε θ
ε θ

ε ε θ
ε θ
ε θ

≥ = −
 = − < <− ≤ ≤ =
 = − < <

≤ − =

x

x

x

x

x

. (9)

There are five conditions in Equation (9), compared to the three conditions in

support vector classification (see Equation (2) in Cauwenberghs & Poggio (2001)), but

like the conditions in support vector classification, they can be identified with three

subsets into which the samples in training set T can be classified. The difference is that

two of the subsets (E and S) are themselves composed of two disconnected components,

depending on the sign of the error ii yxf −)(.

The E Set: Error Support Vectors: { | }iE i Cθ= = (10)

The S Set: Margin Support Vectors: { | 0 }iS i Cθ= < < (11)

The R Set: Remaining Samples: { | 0}iR i θ= = (12)

3. Incremental Algorithm

The incremental algorithm updates the trained SVR function whenever a new sample

cx is added to the training set T. The basic idea is to change the coefficient

cθ corresponding to the new sample cx in a finite number of discrete steps until it meets

the KKT conditions, while ensuring that the existing samples in T continue to satisfy the

KKT conditions at each step. In this section, we first derive the relation between the

change of cθ , or cθ∆ , and the change of other coefficients under the KKT conditions,

and then propose a method to determine the largest allowed cθ∆ for each step. A pseudo-

code description of this algorithm is provided in the Appendix.

3.1 Derivation of the Incremental Relations

Let cx be a new training sample that is added to T. We initially set 0cθ = and then

gradually change (increase or decrease) the value of cθ under the KKT conditions (9).

According to (6), (7), and (9), the incremental relation between ()ih∆ x , iθ∆ , and b∆

is given by:

1

()
l

i ic c ij j
j

h Q Q bθ θ
=

∆ = ∆ + ∆ + ∆∑x (13)

From the equality condition in (3), we have

1

0
l

c i
i

θ θ
=

+ =∑ (14)

Combining (9), (10), (11), (12), (13), and (14), we obtain:

ij j ic c
j S

j c
j S

Q b Q where i Sθ θ

θ θ
∈

∈

∆ + ∆ = − ∆ ∈

∆ = −∆

∑

∑
 (15)

If we define the index of the samples in the S set as:

 1 2{ , , }
sl

S s s s= � (16)

Equation (15) can be represented in matrix form as:

1 1 1 1 1

1

0 1 1 1

1

1

ls

l ll l l s ss s s

s s s s s s c

c

s s cs s s s

b

Q Q Q

QQ Q

θ
θ

θ

∆
 ∆ = − ∆

∆

�

�

� �� � � �

�

 (17)

That is,

 1

ls

s

c

s

b

θ
θ

θ

∆
 ∆ = ∆

∆

β
�

 (18)

where

1 1 11 1

1

1
0 1 11

1
,

1

ls

l l l l ls s s s s

s s s ss s c

s s c s s s s

Q QQ
where

Q Q Q

β
β

β

−

 = = − =

β R R

�

�

� � � � � �

�

 (19)

Define a non-S, or N set, as 1 2{ , , }
nl

N E R n n n= ∪ = � . Combining (9), (10), (11),

(12), (13), and (18), we obtain

1

2

()

()

()
ln

n

n

c

n

h

h

h

θ

∆
 ∆ = ∆

∆

x

x
γ

x

�
 (20)

where,

1 1 11

2 2 1 2

1

1

1

1

ls

ls

ln l l ln n s

n s n sn c

n c n s n s

n c n s n s

Q QQ

Q Q Q

Q Q Q

 = +

γ β

�

�

� � � � �

�

 (21)

In special case when S set is empty, according to (13) and (14), Equation (20) simplifies

to ()nh b∆ = ∆x , for all n E R∈ ∪ .

Given cθ∆ , we can update ,i i Sθ ∈ and b according to (18), and update (),ih i N∈x

according to (20). Moreover, (9) suggests that ,i i Nθ ∈ and (),ih i S∈x are constant if

the S set stays unchanged. Therefore, the results presented in this section enable us to

update all the iθ and ()ih x given cθ∆ . In the next section, we address the question of

how to find an appropriate cθ∆ .

3.2. AOSVR Bookkeeping Procedure

Equations (18) and (20) hold only when the samples in the S set do not change

membership. Therefore, cθ∆ is chosen to be the largest value that either can maintain the

S set unchanged or lead to the termination of the incremental algorithm.

The first step is to determine whether the change cθ∆ should be positive or negative.

According to (9),

 () (()) (())c c c csign sign y f sign hθ∆ = − = −x x (22)

The next step is to determine a bound on cθ∆ imposed by each sample in the training

set. To simplify exposition we only consider the case 0cθ∆ > , and remark that the case

0cθ∆ < is similar.

For the new sample cx , there are two cases:

Case 1: ()ch x changes from ()ch ε< −x to ()ch ε= −x , and the new sample cx is

added to the S set, and the algorithm terminates.

Case 2: If cθ increases from c Cθ < to c Cθ = , the new sample cx is added to the

E set, and the algorithm terminates.

For each sample ix in the set S,

Case 3: If iθ changes from 0 i Cθ< < to i Cθ = , sample ix changes from the S

set to the E set; If iθ changes to 0iθ = , sample ix changes from the S set to the R

set.

For each sample ix in the set E,

Case 4: If ()ih x changes from ()ih ε>x to ()ih ε=x , ix is moved from the E

set to the S set.

For each sample ix in the set R,

Case 5: If ()ih x changes from ()ih ε<x to ()ih ε=x , ix is moved from the R

set to the S set.

The bookkeeping procedure is to trace each sample in the training set T against these

five cases, and determine the allowed cθ∆ for each sample according to (18) or (20). The

final cθ∆ is defined as the one with minimum absolute value among all the possible cθ∆ .

3.3. Efficiently Updating R Matrix

The matrix R that is used in (19)

1 1 1

1

1
0 1 1

1

1

ls

l l ls s s

s s s s

s s s s

Q Q

Q Q

−

 =

R

�

�

� � � �

�

 (23)

must be updated whenever the S set is changed. Following Cauwenberghs & Poggio

(2001), we can efficiently update R without explicitly computing the matrix inverse.

When the kth sample
ksx in the S set is removed from the S set, the new R can be

obtained as follows:

 , ,
,

,

k knew

k kR
= − I I

I I

R R
R R , where [1 2 1]

sl
k k S= + +I � � (24)

When a new sample is added to S set, the new R can be updated as follows:

0

1
1

0 1

0 0 0

new T

iγ

 = +

R β
R β

�

�

 (25)

where β is defined as
1

1

ls

s i

s i

Q

Q

 = −

β R
�

, and iγ is defined as
1

1
ls

i ii s i s iQ Q Qγ = +

β�

when the sample ix was moved from E set or R set. In contrast, when the sample cx is

the sample added to S set, β is can be obtained according to (19), and iγ is the last

element of γ defined in (21).

3.4. Initialization of the Incremental Algorithm

An initial SVR solution can be obtained from a batch SVR solution, and in most cases

that is the most efficient approach. But it is sometimes convenient to use AOSVR to

produce a full solution from scratch. An efficient starting point is the two-sample

solution. Given a training set 1 1 2 2{(,), (,)}T y y= x x , with 1 2y y≥ , the solution of (3) is

1 2
1

11 12

2 1

1 2

2
max(0,min(,))

2()

() / 2

y y
C

K K

b y y

εθ

θ θ

− −=
−

= −
= +

 (26)

The sets E, S, and R are initialized from these two points based on (10), (11), and

(12). If the set S is nonempty, the matrix R can be initialized from (23); as long as S is

empty, the matrix R will not be used.

4. Decremental Algorithm

The decremental (or “unlearning”) algorithm is employed when an existing sample is

removed from the training set. If a sample cx is in the R set, then it does not contribute to

the SVR solution, and removing it from the training set is trivial; no adjustments are

needed. If on the other hand, cx has a nonzero coefficient, then the idea is to gradually

reduce the value of the coefficient to zero, while ensuring all the other samples in training

set continue to satisfy the KKT conditions.

The decremental algorithm follows the incremental algorithm with a few small

adjustments:

(i) The direction of the change of cθ is:

() (()) (())c c c csign sign f y sign hθ∆ = − =x x . (27)

(ii) There is no Case 1 because the removed cx need not satisfy KKT conditions.

(iii) The condition in Case 2 becomes: cθ changing from 0cθ > to 0cθ = .

5. Applications and Comparison with Batch Algorithms

The accurate online SVR (AOSVR) learning algorithm produces exactly the same

SVR as the conventional batch SVR learning algorithm, and can be applied in all

scenarios where batch SVR is currently employed. But for online time-series prediction

and leave-one-out cross-validation (LOOCV), the AOSVR algorithm is particularly well

suited. In this section, we demonstrate AOSVR for both of these applications, and

compare its performance to existing batch SVR algorithms. These comparisons are based

on direct timing of runs using Matlab implementations; we remind the reader that such

timings should be treated with some caution, as they can be sensitive to details of

implementation.

5.1. AOSVR vs. Batch SVR Algorithms with Warm Start

Most batch algorithms for SVR are implemented as “cold-start.” This is appropriate

when a fit is desired to a batch of data that has not been seen before. However, in recent

years there has been a growing interest in “warm-start” algorithms that can save time by

starting from an appropriate solution, and quite a few papers addressed this issue in the

generic context of numeric programming (Gondzio, 1998; Gondzio & Grothey, 2001;

Yildirim & Wright, 2002; Fliege & Heseler, 2002). The warm-start algorithms are useful

for incremental (or decremental) learning, because the solution with N-1 (or N+1) data

points provides a natural starting point for finding the solution with N data points. In this

sense, AOSVR is a kind of warm start algorithm for the QP problem (3), that is specially

designed for the incremental/decremental scenario. This specialty allows AOSVR to

achieve more efficiency when handling SVR incremental/decremental learning, as

demonstrated in our subsequent experiments.

In the machine learning community, three algorithms for batch SVR training are

widely recognized. (a) Gunn (1998) solved SVR training as a generic QP optimization;

we call this implementation QPSVMR. (b) Shevade et al. (1999) proposed an algorithm

specially designed for SVR training, and it is an improved version of the sequential

minimal optimization for SVM regression (SMOR). (c) Chang & Lin (2001) proposed

another algorithm specially designed for SVR training, which we call LibSVMR since it

is implemented as part of the LibSVM software package. We implemented all these

algorithms so that they can run in both a cold-start and a warm-start mode. SMOR and

LibSVMR are implemented in Matlab, and both algorithms allow a straightforward

warm-start realization. Because QPSVMR is based on a generic QP algorithm, it is much

less efficient than SMOR or LibSVMR. To make our subsequent experiments feasible,

we had to implement the QPSVMR core in C (Smola, 1998). Smola (1998) essentially

employs the interior point QP code of LOQO (Vanderbei, 1999). The warm start of

QPSVMR directly adopts the warm-start method embedded in Smola’s implementation

(Smola, 1998).

5.2. Online Time-series Prediction

In recent years, the use of SVR for time-series prediction has attracted increased

attention (Müller et al., 1997; Fernández, 1999; Tay & Cao, 2001). In an online scenario,

one updates a model from incoming data and at the same time makes predictions based

on that model. This arises, for instance, in market forecasting scenarios. Another potential

application is the (near) real-time prediction of electron density around a satellite in the

magnetosphere; high charge densities can damage satellite equipment (Friedel et al.,

2002), and if times of high charge can be predicted ahead of time, the most sensitive

components can be turned off before they are damaged.

In time-series prediction, the prediction origin, denoted O, is the time from which the

prediction is generated. The time between the prediction origin and the predicted data

point is the prediction horizon, which for simplicity we will take as one time step.

A typical online time-series prediction scenario can be represented as follows

(Tashman, 2000):

(1) Given a time series { (), 1, 2,3 }x t t = � and prediction origin O, construct a

set of training samples, ,O BA , from the segment of time series

{ (), 1 }x t t O= � as , {((), ()), 1}O B t y t t B O= = −A X � , where

[]() () (1)
T

t x t x t B= − +X � , () (1)y t x t= + , and B is the embedding

dimension of the training set ,O BA .

(2) Train a predictor ,(;)O BP A X from the training set ,O BA .

(3) Predict (1)x O + using ,ˆ(1) (; ())O Bx O P O+ = A X .

(4) When (1)x O + becomes available, update the prediction origin: 1O O= + .

Then, go to (1) and repeat the above procedure.

Note that the training set ,O BA keeps growing as O increases, so the training of the

predictor in step (2) becomes increasingly expensive. Therefore, many SVR-based time-

series predictions are implemented in a compromised way (Tay & Cao, 2001). After the

predictor is obtained, it stays fixed, and is not updated as new data arrives. In contrast, an

online prediction algorithm can take advantage of the fact that the training set is

augmented one sample at a time, and continues to update and improve the model as more

data arrives.

5.2.1. Experiments

Two experiments were performed to compare the AOSVR algorithm with the batch

SVR algorithm. We are careful to use the same algorithm parameters for online and batch

SVR, but since our purpose is to compare computational performance, we did not attempt

to optimize these parameters for each data set. In these experiments, the kernel function is

a Gaussian radial basis function,
2

exp()i jγ− −X X , where 1γ = ; the regularization

coefficient C and the insensitivity parameter ε in (2) are set to 10 and 0.1 respectively;

the embedding dimension, B, of the training ,O BA , is 5. Also, we scale all the time-series

to [-1,1].

Three widely used benchmark time-series are employed in both experiments: (a) the

Santa Fe Institute Competition time series A (Weigend & Gershenfeld, 1994), (b) the

Mackey-Glass equation with τ=17 (Mackey & Glass, 1977), and (c) the yearly average

sunspot numbers recorded from 1700 to 1995. Some basic information about these time-

series is listed in Table 1. The SV Ratio is the number of support vectors divided by the

number of training samples. This is based on a prediction of the last data point using all

previous data for training. In general, a higher SV ratio suggests that the underlying

problem is harder (Vapnik, 1998).

 # Data Points SV Ratio
Santa Fe Institute 1000 4.52%
Mackey-Glass 1500 1.54%
Yearly Sunspot 292 41.81%

Table 1. Information Regarding Experimental Time Series

The first experiment demonstrates that using a fixed predictor produces less accurate

predictions than using a predictor that is updated as new data becomes available. Two

measurements are used to quantify the prediction performance: mean squared error

(MSE), and mean absolute error (MAE). The predictors are initially trained on the first

half of the data in the time-series. In the fixed case, the same predictor is used to predict

the second half of the time-series. In the online case, the predictor is updated whenever a

new data point is available. The performance measurements for both cases are calculated

from the predicted and actual values of the second half of the data in the time-series. As

shown in Table 2, the online predictor outperforms the fixed predictor in every case. We

also note that the errors for the three time-series in Table 2 coincide with the estimated

prediction difficulty in Table 1 based on SV Ratio.

 Online Fixed
MSE 0.0072 0.0097 Santa Fe

Institute MAE 0.0588 0.0665
MSE 0.0034 0.0036 Mackey-

Glass MAE 0.0506 0.0522
MSE 0.0263 0.0369 Yearly

Sunspot MAE 0.1204 0.1365
Table 2. Performance Comparison For Online and Fixed Predictors

The second experiment compares AOSVR with batch implementations using both

cold-start and warm-start in the online prediction scenario. For each benchmark time-

series, an initial SVR predictor is trained on the first two data points using the batch SVR

algorithms. For AOSVR, we used Equation (26). Afterwards, both AOSVR and batch

SVR algorithms are employed in the online prediction mode for the remaining data points

in the time-series. AOSVR and the batch SVR algorithms produce exactly the same

prediction errors in this experiment, so the comparison is only of prediction speed. All six

batch SVR algorithms are compared with AOSVR on the sunspot time-series, and the

experimental results are plotted in Figure 2. The x-axis of this plot is the number of data

points to which the online prediction model is applied. Note that the core of QPSVMR is

implemented in C. Because the cold-start and warm-start of LibSVMR clearly

outperform those of both SMOR and QPSVMR, only the comparison between LibSVMR

and AOSVR is carried out in our subsequent experiments. The experimental results of

both Santa Fe Institute and Mackey-Glass time-series are presented in Figures 3, and 4

respectively.

Figure 2. Real-time prediction time of yearly sunspot time series

Figure 3. Real-time prediction time of Santa Fe Institute time series

Figure 4. Real-time prediction time of Mackey-Glass time series

These experimental results demonstrate that AOSVR algorithm is generally much

faster than the batch SVR algorithms when applied to online prediction. Comparison of

Figures 2 and 4 furthermore suggests that more speed improvement is achieved on the

sunspot data than on the Mackey-Glass. We speculate that this is because the sunspot

problem is “harder” than the Mackey-Glass – it has a higher support vector ratio – and

that the performance of the AOSVR algorithm is less sensitive to problem difficulty.

To test this hypothesis, we compared the performance of AOSVR to LibSVMR on a

single dataset (the sunspots) whose difficulty was adjusted by changing the value of ε. A

smaller ε leads to a higher support vector ratio and a more difficult problem. Both the

AOSVR and LibSVMR algorithms were employed for online prediction of the full time-

series. The overall prediction times are plotted against ε in Figure 5. Where AOSVR

performance varied by a factor of less than ten over the range of ε, the LibSVMR

performance varied by a factor of about 100.

Figure 5. Semi-log and linear plots of prediction time of yearly sunspot time series

5.2.2. Limited-Memory Version of the Online Time-series Prediction Scenario

One problem with online time-series prediction in general is the longer the prediction

goes on, the bigger the training set ,O BA will become, and the more SVs will be involved

in SVR predictor. A complicated SVR predictor imposes both memory and computation

stress on the prediction system. One way to deal with this problem is to impose a

“forgetting” time W. When training set ,O BA grows to this maximum W, then the

decremental algorithm is used to remove the oldest sample before the next new sample is

added to the training set.

We note that this variant of the online prediction scenario is also potentially suitable

for non-stationary time-series, as it can be updated in real-time to fit the most recent

behavior of the time-series. More rigorous investigation in this direction will be a future

effort.

5.3. Leave-One-Out Cross-validation

Cross-validation is a useful tool for assessing the generalization ability of a machine-

learning algorithm. The idea is to train on one subset of the data, and then to test the

accuracy of the predictor on a separate disjoint subset. In leave-one-out cross-validation

(LOOCV), only a single sample is used for testing, and all the rest are used for training.

Generally, this is repeated for every sample in the dataset. When the batch SVR is

employed, LOOCV can be very expensive, since a full retraining is done for each sample.

One compromise approach is to estimate LOOCV with related but less expensive

approximations, such as the Xi-Alpha Bound (Joachims, 2000), and Approximate Span

Bound (Vapnik & Chapelle, 1999). Although Lee & Lin (2001) proposed a numerical

solution to reduce the computation for directly implementing LOOCV, the amount of

computation required is still considerable. Also, the accuracy of the LOOCV result

obtained using this method can be potentially compromised because a different parameter

set is employed in LOOCV and in the final training.

The decremental algorithm of AOSVR provides an efficient implementation of

LOOCV for SVR:

(1) Given a dataset D, construct the SVR function f(x) from the whole dataset D

using batch SVR learning algorithm;

(2) For each non-support vector xi in the dataset D, calculate error ei corresponding

to xi as: ei = yi-f (xi), where yi is the target value corresponding to xi;

(3) For each support vector xi involved in the SVR function f(x),

a. Unlearn xi from the SVR function f(x) using the decremental algorithm to

obtain the SVR function fi(x) which would be constructed from the dataset

Di=D/{xi};

b. Calculate error ei corresponding to support vector xi as: ei = yi-fi(xi), where yi

is the target value corresponding to xi.

(4) Knowing the error for each sample xi in D, it is possible to construct a variety of

overall measures; a simple choice is the MSE:

21
()

N

LOOCV i
i

MSE e
N

= ∑D (28)

where N is number of samples in dataset D. Other choices of error metric, such

as MAE, can be obtained just by altering (28) appropriately.

5.3.1. Experiment

The algorithm parameters in this experiment are set the same as those in the

experiments in Subsection 5.1.1. Two famous regression datasets, the auto-mpg and

Boston housing datasets, are chosen from the UCI machine-learning repository. Some

basic information of these datasets is listed in Table 3.

 # Attributes # Samples SV Ratio
Auto-MPG 7 392 41.07%

Boston Housing 13 506 36.36%
Table 3. Information Regarding Experimental Regression Datasets

The experimental results of both datasets are presented in Figure 6. The x-axis is the

size of the training set, upon which the LOOCV is implemented. These plots show that

AOSVR-based LOOCV is much faster than its LibSVMR counterpart.

Figure 6. Semi-log plots of LOOCV time of Auto-MPG and Boston Housing dataset

6. Conclusions

We have developed and implemented an accurate online support vector regression

(AOSVR) algorithm that permits efficient retraining when a new sample is added to, or

when an existing sample is removed from, the training set. AOSVR is applied to online

time-series prediction and to leave-one-out cross-validation, and the experimental results

demonstrate that the AOSVR algorithm is more efficient than conventional batch SVR in

these scenarios. Moreover, AOSVR appears less sensitive than batch SVR to the

difficulty of the underlying problem.

After this manuscript was prepared, we were made aware of a similar online SVR

algorithm, which was independently presented in Martin (2002).

Appendix

Pseudo-code for Incrementing AOSVR with a New Data Sample

Inputs:

� Training set {(,), 1... }i iT y i l= =x

� Coefficients { , 1... }i i lθ = , and bias b

� Partition of samples into sets S, E, and R

� Matrix R defined in (23)

� New sample (,)c cyx

Outputs:

� Updated coefficients { , 1... 1}i i lθ = + and bias b

� Updated Matrix R

� Updated partition of samples into sets S, E, and R

AOSVR Incremental Algorithm:

• Initialize 0cθ =

• Compute ()c i ic
i E S

f Q bθ
∈ ∪

= +∑x

• Compute () ()c c ch f y= −x x

• If ()ch ε≤x , then assign cx to R, and terminate.

• Let (())cq sign h= − x be the sign that cθ∆ will take

• Do until the new sample cx meets the KKT condition

o Update β,γ according to (19) and (21)

o Start bookkeeping procedure:

 Check the new sample cx ,

- 1 (()) /c c cL h qε γ= − −x (Case 1)

- 2c cL qC θ= − (Case 2)

 Check each sample ix in the set S (Case 3)

- If 0iqβ > and 0iC θ> ≥ , () /S
i i iL C θ β= −

- If 0iqβ > and 0 i Cθ> ≥ − , /S
i i iL θ β= −

- If 0iqβ < and 0iC θ≥ > , /S
i i iL θ β= −

- If 0iqβ < and 0 i Cθ≥ > − , () /S
i i iL C θ β= − −

Check each sample ix in the set E (Case 4)

- (() ()) /E
i i i iL h sign qβ ε β= − −x

Check each sample ix in the set R (Case 5)

- (() ()) /R
i i i iL h sign qβ ε β= − +x

Set 1 2min(, , , ,)S E R
c c cq L Lθ∆ = L L L ,

 where { , }S S
iL i S= ∈L , { , }E E

iL i E= ∈L , and { , }R R
iL i R= ∈L .

Let Flag be the case number that determines θ∆ .

Let Ix be the particular sample in T that determines cθ∆ .

o End Bookkeeping Procedure.

o Update cθ , b, and ,i i Sθ ∈ according to (18)

o Update (),ih i E R∈ ∪x according to (20)

o Switch Flag

 (Flag = 1):

 Add new sample cx to set S; update matrix R according to (25)

 (Flag = 2):

 Add new sample cx to set E

 (Flag = 3):

 If 0Iθ = , move Ix to set R; update R according to (24)

 If I Cθ = , move Ix to set E; update R according to (24)

 (Flag = 4):

 Move Ix to set S; update R according to (25)

 (Flag = 5):

 Move Ix to set S; update R according to (25)

o End Switch Flag

o If Flag ≤ 2, terminate; otherwise continue the Do-Loop.

• Terminate incremental algorithm; ready for the next sample.

Acknowledgements

We thank Professor Chih-Jen Lin in National University of Taiwan for useful

suggestions on some implementation issues. We also thank the anonymous reviewers for

pointing us to the work of Martin (2002) and for suggesting that we compare AOSVR to

the warm-start variants of batch algorithms. This work is supported by the NASA project

NRA-00-01-AISR-088 and by the Los Alamos Laboratory Directed Research and

Development (LDRD) program.

References

Cauwenberghs, G., & Poggio, T. (2001). Incremental and decremental support vector

machine learning. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in

Neural Information Processing Systems, 13 (pp. 409-123). Cambridge, MA: MIT

Press.

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library for support vector machines.

Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Chang, C.-C., & Lin, C.-J. (2002). Training ν-support vector regression: theory and

algorithms. Neural Computation, 14, 1959-1977.

Csato, L., & Opper, M. (2001). Sparse representation for Gaussian process models. In T.

K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in Neural Information

Processing Systems, 13 (pp. 444-450). Cambriddge, MA: MIT Press.

Fernández, R.(1999). Predicting time series with a local support vector regression

machine. Advanced Course on Artificial Intelligence (ACAI '99). Online proceedings

available at http://www.iit.demokritos.gr/skel/eetn/acai99/.

Fliege, J., & Heseler, A. (2002). Constructing approximations to the efficient set of

convex quadratic multiobjective problems. Ergebnisberichte Angewandte

Mathematik. No. 211. Fachbereich Mathematik, Universität Dortmund, 44221

Dortmund, Germany. (Available online at http://www.optimization-

online.org/DB_HTML/2002/01/426.html.)

Friedel, R.H, Reeves, G. D., & Obara, T. (2002). Relativistic electron dynamics in the

inner magnetosphere - a review. Journal of Atmospheric and Solar-Terrestrial

Physics, 64, 265-282.

Gentile, C. (2001). A new approximate maximal margin classification algorithm. Journal

of Machine Learning Research, 2, 213-242.

Gondzio, J., (1998). Warm start of the Primal-Dual method applied in the cutting plane

scheme. Mathematical Programming, 83, 125-143.

Gondzio, J., & Grothey, A. (2001). Reoptimization with the Primal-Dual interior point

method. SIAM Journal on Optimization, 13, 842-864.

Graepel, T., Herbrich, R., & Williamson, R. C. (2001). From margin to sparsity. In T. K.

Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in Neural Information

Processing Systems, 13 (pp 210-216). Cambridge, MA: MIT Press.

Gunn, S. (1998). Matlab SVM toolbox. Software package is available at

http://www.isis.ecs.soton.ac.uk/resources/svminfo/.

Herbster, M. (2001). Learning additive models online with fast evaluating kernels. In D.

P. Helmbold & B. Williamson (Eds.), Proceedings of 14th Annual Conference on

Computational Learning Theory (pp. 444-460). New York: Springer.

Joachims, T. (2000). Estimating the generalization performance of an SVM efficiently. In

P. Langley (Ed.) Proceedings of the Seventeenth International Conference on

Machine Learning (pp. 431-438). San Francisco: Morgan Kaufman.

Kivinen, J., Smola, A. J., & Williamson, R. C. (2002). Online learning with kernels. In:

T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in Neural Information

Processing Systems, 14 (pp. 785-792). Cambridge, MA: MIT Press.

Lee, J.-H., & Lin, C.-J. (2001). Automatic model selection for support vector machines.

Technical report, Dept. of Computer Science and Information Engineering, National

Taiwan University, Taipei, Taiwan.

Li, Y., & Long, P. M. (1999). The relaxed online maximum margin algorithm. In S. A.

Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in Neural Information Processing

Systems, 12, (pp. 498-504). Cambridge, MA: MIT Press.

Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control

systems. Science, 197, 287-289.

Martin, M. (2002). On-line support vector machines for function approximation.

Technical Report LSI-02-11-R, Software Department, Universitat Politecnica de

Catalunya, Spain.

Müller, K.-R., Smola, A. J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., & Vapnik, V.

(1997). Predicting time series with support vector machines. In W. Gerstner (Ed.),

Artificial Neural Networks – ICANN ‘97 (pp. 999-1004). Berlin: Springer.

Ralaivola, L., & d'Alche-Buc, F. (2001). Incremental support vector machine learning: a

local approach. In G. Dorffner, H. Bischof, & K. Hornik (Eds.), Artificial Neural

Networks – ICANN 2001 (pp. 322-330) Berlin: Springer.

Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., & Murthy, K. R. K. (1999).

Improvements to SMO algorithm for SVM regression. Technical Report CD-99-16,

National University of Singapore.

Smola A. (1998). Interior point optimizer for SVM pattern recognition. Software package

is available at http://www.kernel-machines.org/code/prloqo.tar.gz.

Smola, A. J., & Schölkopf, B. (1998). A tutorial on support vector regression.

NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University

of London, UK.

Syed, N. A., Liu, H. & Sung, K. K. (1999). Incremental learning with support vector

machines. In Proceedings of the Workshop on Support Vector Machines at the

International Joint Conference on Artificial Intelligence – IJCAI-99. San Francisco:

Morgan Kaufmann.

Tashman, L. J. (2000). Out-of-sample tests of forecasting accuracy: an analysis and

review. International Journal of Forecasting,16, 437-450.

Tay, F. E. H., & Cao, L. (2001). Application of support vector machines in financial time

series forcasting. Omega, 29, 309-317.

Vanderbei, R. J. (1999). LOQO: An interior point code for quadratic programming.

Optimization Methods and Software, 11, 451-484.

Vapnik, V. (1998). Statistical Learning Theory, New York: Wiley.

Vapnik, V., & Chapelle, O. (1999). Bounds on error expectation for support vector

machine. In A. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Advances

in Large Margin Classifiers (pp. 261-280). Cambridge, MA: MIT Press.

Weigend, A. S., & Gershenfeld, N. A. (1994). Time-series Prediction: Forcasting the

future and Understanding the Past, Reading, MA: Addison-Wesley.

Yildirim, E. A., & Wright, S. J., (2002). Warm-start strategies in interior-point methods

for linear programming. SIAM Journal on Optimization, 12, 782-810.

